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1 Introduction

This summaries has been made primly by used the lecture notes [1] with the help of [2] and
some websites.

1.1 Element of Set Theory

1. Cardinality: numbers of elements of a finite set (its often denoted by #(A)).

2. Given subsets A1, A2, ... of M their union
⋃∞
j=1Aj and their intersection

⋂∞
j=1Aj is

the set of those x ∈ M that belong to a least one of the Aj or that belong to all Aj ,
respectively

3. Distributive Law:

A ∩

 ∞⋃
j=1

Bj

 =
∞⋃
j=1

(A ∩Bj)

4. Two sets A and B are said to be disjoint provided that A ∩B = ∅.

5. A sequence of sets A1, A2, ... is called pairwise disjoint whenever Ai ∩Aj = ∅ if i 6= j

6. The complementary set of B ⊆M is Bc := {x ∈M : x 6∈ B}

7. Let A,B ⊆ M , then the difference A\B is defined by {w ∈ M : w ∈ A and w 6∈ B}
or, similarly A\B = A ∩Bc

8. De Morgan’s rules ∞⋃
j=1

Aj

c

=
∞⋂
j=1

Acj

 ∞⋂
j=1

Aj

c

=
∞⋃
j=1

Acj

1.2 Combinatorics

1.2.1 The rules of sum and product

The Rule of Sum and Rule of Product are used to decompose difficult counting problems into
simple problems.

• Rule of Sum: If a sequence of tasks T1, T2, ..., Tm can be done in w1, ..., wm ways
respectively (no tasks can be performed simultaneously), then the number of ways to
do one of these task is

∑
j≥1wj , i.e if we consider two task A and B which are disjoint,

then #(A ∩B) = #(A) + #(B)
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• Rule of Product: If we have set of events A1, A2, ... where A1 occur before A2, A2

occur before A3, and so on, then #
(∏

j≥1Aj

)
=
∏
j≥1 #(Aj)

1.2.2 Permutations

A permutation is an arrangement of some elements in which order matters. In other words
a Permutation is an ordered Combination of elements.

1. Let Sn be the set of all permutations of order n. Then how many ways I can rearrange
the numbers {1, ..., n}?

#(Sn) = n!

or, equivalently, there are n! different ways to order n distinguishable objects

2. How many ways are there to pick a sequence of k (not necessarily distinct) numbers
chosen from 1, ..., n?

nk

3. How many ways are there to pick a sequence of k distinct numbers chosen from 1, ..., n?
in this case makes sense if k ≤ n

(n)k =
n!

(n− k)!

4. How many ways can you distribute n objects into one group of k and into another of
n− k elements? or How many subsets of {1, ..., n} of cardinality exactly k are there?(

n

k

)
=

n!

k!(n− k)!

This is called the binomial coefficients, read ”n chosen k”

5. How many ways are there to draw k balls out of 1, ..., n with replacement but without
order? (

n+ k − 1

k

)
6. How many ways you can distribute n elements into m groups of sizes k1, k2, ..., km where
k1 + · · ·+ km = n? (

n

k1, ..., km

)
:=

n!

k1! · · · km!
, k1 + · · ·+ km = n

This is called multinomial coefficient, read ”n chosen k1 up to km”

7. Pascal’s triangle (
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
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1.2.3 Inclusion-Exclusion principle

The Inclusion-exclusion principle computes the cardinal number of the union of multiple
non-disjoint sets. For two sets A and B, the principle states

#(A ∪B) = #(A) + #(B)−#(A ∩B)

the generalized formula

#

(
n⋃
i=1

Ai

)
=

∑
1≤i<j<k≤n

#(Ai∩Aj)+
∑

1≤i<j<k≤n
#(Ai∩Aj∩Ak)−· · ·+(−1)n−1#(A1∩· · ·∩A2)

2 Probability Spaces

The basic concern of Probability Theory is to model experiments involving randomness, that
is, experiments with nondetermined outcomes, shortly called random experiments.

Definition 2.1 Random experiments are described by probability spaces (Ω,A,P)

Definition 2.2 The sample space Ω is a nonempty set that contains (at least) all possible
outcomes of the random experiment.

Remark: Due to mathematical reasons sometimes it can be useful to choose K larger than
necessary. It is only important that the sample space contains all possible results.

Definition 2.3 Any element w ∈ Ω is called an outcome. Any subset A ⊆ Ω is called event

Definition 2.4 A Probability space is a triple (Ω,A,P), where Ω is a sample space, A is

A =

{
set of all subsets of Ω if Ω is countable

a certain set of subsets of Ω if Ω is uncountable

and P : A → [0, 1] is a probability measure (probability function)

Definition 2.5 Let Ω be a sample space and let A be as in definition 2.4. A function P :
A → [0, 1] is called probability measure on (Ω,A) if

1. P(∅) = 0 and P(Ω) = 1

2. if A1, A2, ... are pairwise disjoint, then

P

⋃
i≥1

Ai

 =
∑
i≥1

P(Ai)

This are called Kolmogorov’s axioms of probability. (2) is often called sigma-additivity.

Theorem 2.6 First properties of probabilities
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• P(∅) = 0

• if A,B ∈ Ω satisfy A ⊆ B, then P(B\A) = P(B)− P(A)

• P(Ac) = 1− P(A) for any A ∈ Ω

• P(A) ≤ 1 for any A

• P(A ∪B) = P(A) + P(B)− P(A ∩B) (Inclusion-Exclusion principle)

• Probability measures are monotone, that is, if A ⊆ B then P(A) ≤ P(B)

Theorem 2.7 Sigma sub-additivity For any A1, A2, ..., not necessarily disjoint

P

⋃
i≥1

Ai

 ≤∑
i≥1

P(Ai)

Theorem 2.8 Inclusion-exclusion formula Let (Ω,A,P) be a probability space and let
A1, A2, ..., An be some (not necessarily disjoint events, then

P

 n⋃
j=1

Aj

 =
n∑
k=1

(−1)k+1
∑

1≤j1<···<jk≤n
P(Aj1 ∩ · · · ∩Ajk)

Theorem 2.9 Suppose Ω = {w1, w2, ...} and p1, p2, ... are non negative numbers with
∑
pi =

1. Defining, for all A ∈ Ω,

P(A) =
∑
i:wi∈A

pi

Then P is a probability measure.

Theorem 2.10 If (Ω,A,P) be a probability space, Ω is finite and the outcomes w ∈ Ω all
have the same probability, then, for any A ∈ A,

P(A) =
#(A)

#(Ω)

3 Conditional probability and independence

Definition 3.1 Let (Ω,A,P) be a probability space and A,B events; assume P(B) > 0. Then
the probability of A given B is defined by

P(A|B) =
P(A ∩B)

P(B)

Definition 3.2 The mapping P(|̇B) is called conditional probability or also conditional
distribution (under condition B)

Remark: The main advadge of this definition is that it implies that conditional probabilities
share all the proprieties of ordinary probability measures.
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Theorem 3.3 Law of total probability Let (Ω,A,P) be a probability space and let B1, ..., Bn
in A be disjoint with P(Bj) > 0 and

⋃n
j=1Bj = Ω. Then for each A ∈ A holds

P(A) =

n∑
j=1

P(Bj)P(A|Bj)

Theorem 3.4 Bayes’formula Suppose we are given disjoint events B1 to Bn satisfying⋃n
j=1Bj = Ω and P(Bj) > 0. Let A be an event with P(A) > 0. Then for each j ≤ n the

following equation holds:

P(Bj |A) =
P(Bj)P(A|Bj)∑n
i=1 P(Bi)P(A|Bi)

Remark: in case P(A) is already known, Bayes’s formula simplifies to

P(Bj |A) =
P(Bj)P(A|Bj)

P(A)
, j = 1, ..., n

Definition 3.5 Let (Ω,A,P) be a probability space. Two events A and B in A are said to
be independent provided that

P(A ∩B) = P(A) · P(B)

In the case that this eq. does not hold, the events A and B are said dependent

Definition 3.6 Events A1, ..., An are said to be pairwise independent if, whenever i 6= j,
then

P(Ai ∩Aj) = P(Ai)P(Aj)

In other words, for all 1 ≤ i < j ≤ 1 the events Ai and Aj are independent

Definition 3.7 The events A1, ..., An are said to be mutually independent provided that
for each subset of I ⊆ {1, ..., n} we have

P

(⋂
i∈I

Ai

)
=
∏
i∈I

P(Ai)

Remark: If A1, ..., An are mutually independent then they are also pairwise independent.
However, in general the converse does not hold.

4 Random Variables

The are two ways to model a random experiment. The classical approach is to construct a
probability space that describes this experiment. Another way is to choose a random variable
X so that the probability of the occurrence of an event B ∈ R equals P(X ∈ B).

Definition 4.1 Let (Ω,A,P) be a probability space. A mapping X : Ω → R is called a
(real-valued)random variable

Remark: w ∈ Ω such that X(w) = x is a event.
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4.1 Probability Distribution of a Random Variable

Suppose we are given a random variable X : Ω → R. We define now a mapping PX from A
to [0, 1] as follows:

PX(B) := P(X−1(B)) = P(w ∈ Ω : X(w) ∈ B) = P(X ∈ B)

Definition 4.2 Two random variables X1 and X2 are said to be identically distributed
provided that PX1 = PX2. Hereby, it is not necessary that X1 and X2 are defined on the same
sample space. Only their distributions have to coincide.

Definition 4.3 Let X be a random variable, either discrete or continuous. Then its cumu-
lative distribution function FX : R→ [0, 1] is defined by

FX(x) = P(X ≤ x)

Theorem 4.4 The distribution function FX of the random variable X satisfies:

1. FX(−∞) = 0 and FX(∞) = 1

2. FX is nondecreasing

3. FX is continuous from the right

Lemma 4.5 P(X = x) = FX(x)− limy↗x FX(y).

4.1.1 Discrete Random Variable

Definition 4.6 A random variable X is discrete provided there exists an at most countably
infinite set D ⊂ R such that X : Ω→ D.
In other words, a random variable is discrete if it attains at most countably infinite many
different values.

Remark: If a random variable X is discrete with values in D ⊂ R, then PX(D) = P(X ∈
D) = 1.

Without losing generality we may always assume the following: if a random variable X
has a discrete probability distribution, that is, P(X ∈ D) = 1 for some finite or countably
infinite set D, then X attains values in D.

Definition 4.7 Let X be a discrete random variable, then the probability mass function
of X is defined as follows

fX(x) = P(X = x) for all x

Remark: Note that if X is discrete, then

FX(x) = P(X ≤ x) =
∑
y≤x

P(X = y) =
∑
y≤x

fX(y)
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4.1.2 Continuous random variables

Definition 4.8 A random variable X is said to be continuous provided that its distribu-
tion PX is a continuous probability measure. That is, PX possesses a probability density
function, or pdf. Or a X is continuous if its cumulative distribution function FX(x) is
continuous, i.e P(X = x) = 0.

Definition 4.9 A pdf function of a continuous random variable X is a function fX : R →
[0,∞) that satisfies

P(X ≤ x) = FX(x) =

∫ x

−∞
fX(y) dy for all x ∈ R

Remark: for all real numbers a < b

P(a ≤ X ≤ b) = FX(x) =

∫ b

a
fX(y) dy

Remark: If X is continuous the following are equal

P(a ≤ X ≤ b) = P(a < X ≤ b) = P(a ≤ X < b) = P(a < X < b)

and P(−∞X <∞) = 1

4.2 Function of random variable

Let g : R→ R and let Y,X be random variables. Let Y = g(X), then

Definition 4.10 cdf

FY (y) = P(Y ≤ y) = P(g(X) ≤ y) = P(X ∈ g−1((−∞, y])

Remark: if X discrete, then FY (y) =
∑

x∈g−1 fX(x). Instead if its continuous the integral.

Theorem 4.11

1. If Y = g(X) and g is strictly increasing, then FY (y) = FX(g−1(y))

2. If g is strictly decreasing and X is continuous, then FY (y) = 1− FX(g−1(y))

Definition 4.12 pmf

fY (y) = P(Y = y) = P(g(X) = y) = P(X ∈ g−1(y)) =
∑

x∈g−1(y)

fX(x)

Definition 4.13 pdf Assume X has pdf fX and Y = g(X) with g differentiable and strictly
increasing or decreasing. Then

fY (y) = fX(g−1(y)) ·
∣∣∣∣ ddyg−1(y)

∣∣∣∣
/faculty of Science and Engineering 7



Probability Theory/Zambelli Lorenzo University of Groningen

5 Expected Value and Variance

5.1 Expected Value

Definition 5.1 Expectation The expectation (or expected value or mean) of a random vari-
able X is

E[x] =

{∑
x x · fX(x) if X is discrete∫∞
−∞ x · fX(x) dx if X has pdf fX

provided that the sum or integral exists.

Remark: Since xiP(X = xi) ≥ 0 and xfX(x) ≥ 0 (for continuous) for non-negative X, for
those random variables the sum and the integral is always well-defined, but may be infinite.

Theorem 5.2 For g : R→ R and a random variable X,

E[g(X)] =

{∑
x g(x) · fX(x) if X is discrete∫∞
−∞ g(x) · fX(x) dx if X has pdf fX

provided that the sum or integral exists.

Theorem 5.3 if X is a random variable, a, b, c ∈ R and g1, g2 : R→ R such that E(g1(X)),E(g2(X))
exist, then,

1. E(ag1(X) + bg2(X) + c) = aE(g1(X)) + bE(g2(X)) + c

2. If g1 ≥ 0, then E(g1(X)) ≥ 0

3. If g1 ≥ g2, then E(g1(X)) ≥ E(g2(X))

4. If a ≤ g1(X) ≤ b, then a ≤ E(g1(X)) ≤ b

Theorem 5.4 E through cdf

1. If X is a discrete random variable that only assumes values on {0, 1, 2, ...}, then

E[X] =
∑
n≥0

(1− FX(n))

2. If X is a continuous and non-negative random variable, then

E[X] =

∫ ∞
o

1− FX(x) dx

5.2 Variance

Definition 5.5 For a random variable X and an integer n, we define the variance of X:

Var(X) = E[(X − µ)2].

where µ = E[X].
The positive square root of Var(X) is called the standard deviation of X.
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Remark: Var(X) = E[X2]− µ2

Interpretation: The expected value µ of a random variable is its main characteristic. It
tells us around which value the observations of X have to be expected. But it does not tell us
how far away from µ these observation will be on average. Are they concentrated around µ
or are they widely dispersed? This behavior is described by the variance. It is defined as the
average quadratic distance of X to its mean value. If Var(X) is small, then we will observe
realizations of X quite near to its mean. Otherwise it is likely to observe values of X fa away
from its expected value.

Theorem 5.6 If X is a random variable and a, b are constants,

Var(aX + b) = a2 Var(X)

6 Discrete distributions

6.1 Discrete uniform distribution

Let a, b integers, a < b. A random variable X follows a discrete uniform distribution with
parameters a and b (abbreviated: X ∼ Unif(a, b)) if

fX(x) =
1

b− a+ 1
, x = a, a+ 1, ..., b

(in words: X is equally likely to be equal to any of the integer between (and including) a and
b).

1. Expectation: E(X) = a+b
2

2. Variance Var(X) = (b−a+1)2−1
12

6.2 Bernoulli distribution

Let P ∈ [0, 1]. X follows a Bernoulli distribution with parameter p, that is, X ∼ Ber(p) if

fX(1) = p; fX(0) = 1− p

1. E(X) = 0 · (1− p) + 1 · p = p

2. Var(X) = E[X2]− µ2 = p− p2 = p(1− p)

Remark: A Bernoulli trial is an experiment which results in success with probability p and
failure with 1− p. X is then 1 when there is success and 0 when there is failure.

6.3 Binomial distribution

The sample space is Ω = {0, 1, ..., n} for some n ≥ 1 and p is a real number with 0 ≤ p ≤ 1

Definition 6.1 The probability measure Bin(n, p) defined by

P(X = x) = fX(x) =

(
n

x

)
px(1− p)n−x, x = 0, 1, ..., n

where fX is the pmf of X, is called binomial distribution with parameters n and p
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Remark: if A ⊆ {0, 1, ..., n}, then

Binn,p(A) =
∑
k∈A

(
n

k

)
pk(1− p)n−k

1. Expectation: E(X) = np

2. Variance: Var(X) = np(1− p)

Remark: The binomial distribution describes the following experiment. We execute n times
independently the same experiment where each time either success or failure may appear.
The success probability is p. Then Bin(n, p) of X = x is the probability to observe exactly x
times success or, equivalently, n− x times failure.

Theorem 6.2 Binomial theorem

(a+ b)n =
∑

0≤k≤n

(
n

k

)
an−kbk

6.4 Geometric distribution

Suppose we perform Bernoulli trials with probability p of success until the first success is
obtain. Let X be the numbers of trials needed for observe success for the first time. Then,
for x ∈ {1, 2, ...},

fX(x) = P(X = x) = (1− p)x−1p

we say that X follows a geometric distribution with parameter p, X ∼ Geo(p)

1. Expectation: E(X) = 1
p

2. Variance: Var(X) = (1− p)/p2

6.5 Poisson distribution

Let λ > 0. A random variable X follows the Poisson distribution with parameter λ, X ∼
Poi(λ) if

fX(k) =
λk

k!
e−λ k = 0, 1, ...

Remark: note that
∑

x≥0 fX(k) = 1

1. Expectation: E[X] =
∑

k≥0 k ·
λk

k! e
−λ = λ

2. Variance: Var(X) = λ

Poisson approximation to Binomial: this is an approximation which can be summarized
by: Bin(n, p) is close to Poi(λ) when n is large, p is small and np is close to λ.

Proposition 6.3 Assume (pn)n∈N is a sequence such that

pn ∈ [0, 1] for each n and lim
n→∞

npn = λ > 0.
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Then, for each k ∈ N, (
n

k

)
pkn(1− pn)n−k︸ ︷︷ ︸

fX(k) for X∼Bin(n,pn)

n→∞
====⇒ λk

k!
e−λ︸ ︷︷ ︸

fX for X∼Poi(λ)

Remark: The Poisson distribution describes experiments where the number of trials is big,
but the single success probability is small.

7 Continuous distributions

7.1 Uniform distribution

a, b ∈ R, a < b. A random variable X follows a continuous uniform distribution between a
and b if it has pdf

fX(x) =
1

b− a
if x ∈ (a, b)

and it is called uniform random variable.

1. Expectation: E[X] =
∫ b
a x ·

1
b−a dx = b+a

2

2. Variance: Var(X) =
∫ b
a

(
x− b+a

2

)2 · 1
b−a dx = (b−a)2

12

7.2 Exponential distribution

Idea: ”waiting time until next ....”

Remark:The exponential distribution plays an important role for the description of life-
times. For instance, it is used to determine the probability that the lifetime of a component
part or the duration of a phone call exceeds a certain time T ¿ 0. Furthermore, it is applied
to describe the time between the arrivals of customers at a counter or in a shop.

Let λ > 0. A random variable X with pdf

X ∼ Exp(λ)⇒ fX(x) = λe−xλ, x > 0

Remark: Fx =
∫ x
−∞ fX(x) dx = 1− e−xλ if x > 0

1. Expectation: E[X] = 1
λ

2. Variance: Var(X) = 1
λ2

This distribution is memoryless, i.e. P(X > s + t|X > s) = P(X > t) when X ∼
Exp(λ),s, t > 0
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7.3 Gamma distribution

Idea: ”Make exponential distribution more flexible”

Euler’s gamma function is a mapping from (0,∞) to R defined by

Γ(a) =

∫ ∞
0

ta−1 · e−t dt

Proposition 7.1

1. if a > 0, then Γ(a+ 1) = aΓ(a)

2. For n ∈ N follows Γ(n) = (n–1)!. In particular,Γ(1) = Γ(2) = 1 and Γ(3) = 2.

Given α, β > 0, a random variable X ∼ Γ(α, β) if

fX(x) =

{
1

Γ(α)βα · x
α−1 · e−xβ if x > 0

0 otherwise

Note: the exponential distribution with parameter λ is the Γ(1, λ) distribution.

1. Expectation:

E(x) =
Γ(α+ 1)βα

Γ(α)βα+1
=
α

β

2. Variance: Var(X) = α/β2

7.4 Normal (or Gaussian) distribution

This section is devoted to the most important probability measure, the normal distribution.
The idea is the ”universal approximation for averages”.
The normal distribution has a bell-shape density function and is used in the sciences to
represent real-valued random variables that are assumed to be additively produced by many
small effects.

Definition 7.2 The probability measure generated by

fX(x) =
1√
2πσ

· e−
(x−µ)2

2σ2

is called normal distribution with expected value µ, and standard deviation σ. It is denoted
by N (µ, σ2), that is, for all a < b

N (µ, σ2)([a, b]) =
1√
2πσ

∫ b

a
e−

(x−µ)2

2σ2 dx

Definition 7.3 The probability measure N (0, 1) is called standard normal distribution. It is
given by

N (0, 1)([a, b]) =
1√
2π

∫ b

a
e−

x2

2 dx

Proposition 7.4 if X ∼ N (µ, σ2) and Y = aX + b with a 6= 0, then Y ∼ N (aµ+ b, a2σ2)

Remark: if X ∼ N (µ, σ2), then Z = X−µ
σ ∼ N (0, 1).
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8 Random Vectors

Definition 8.1 An 2-dimensional random vector is a function from a sample space Ω into
R2.

Definition 8.2 If (X,Y ) is a discrete random vector, the function

fX,Y (x, y) = P((X,Y ) = (x, y))

is called the joint probability mass function of (X,Y )

Key propery:A ∈ R2, then P((X,Y ) ∈ A) =
∑

(X,Y )∈A fX,Y (x, y)

Definition 8.3 A random vector (X,Y ) is continuous if there exists a function fX,Y : R2 →
[0,∞) such that

P((X,Y ) ∈ A) =

∫∫
A
fX,Y (x, y) dx dy

and its called the joint pdf of (X,Y )

Definition 8.4 The joint cumulative distribution of the random vector (X,Y ) is

FX,Y (x, y) = P(X ≤ x, Y ≤ y)

Note: in the continuous case, we have for continuous fX,Y :

fX,Y (x, y) =
∂2

∂x∂y
F (x, y)

Definition 8.5 Let X be a continuous random variable and Y be a discrete random variable.
Then, a function fX,Y : R2 → [0,∞) is called joint probability density function if

P((X,Y ) ∈ A) =

∫
R

∑
y:(x,y)∈A

fX,Y (x, y) dx

Definition 8.6 marginal pmf Let fX,Y (x, y) be a pmf for a random vector (X,Y ), then

fX(x, y) =
∑
y

fX,Y (x, y)

fY (x, y) =
∑
x

fX,Y (X,Y )

are the marginal pmf respect to x and y respectively.

Definition 8.7 marginal pdf Let fX,Y (x, y) be a pdf for a random vector (X,Y ), then

fX(x, y) =

∫ ∞
−∞

fX,Y (x, y)dy

fY (x, y) =

∫ ∞
−∞

fX,Y (X,Y )dx

are the marginal pdf respect to x and y respectively.
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8.1 Conditional distribution & independence

Definition 8.8 conditional pmf Let (X,Y ) be a discrete random vector with joint pmf
fX,Y and marginals fX and fY . The conditional pmf of X given Y is the function

fX|Y (x|y) = P(X = x|Y = y) =
P(X = x, Y = y)

P(Y = y)

defined for all y such that fY (y) 6= 0

Definition 8.9 Conditional pdf Let (X,Y ) be continuous random variables with pdf fX,Y (x, y),
then

fX|Y (x|y) =
fX,Y (x, y)

fY (y)

is the conditional pdf of X given Y .

Remark: this definition holds also in the mixed case, i.e X continuous and Y discrete.

Definition 8.10 Two random variables X,Y are independent if

fX,Y = fX(x) · fY (y)

both for discrete and continuous.

Proposition 8.11 Factorization criterion Let two function g, h : R→ [0,∞) such that

fX,Y (x, y) = g(x) · h(y)

then X,Y are independent and

fX(x) =
g(x)∫∞

−∞ g(s) ds
fY (y) =

h(y)∫∞
−∞ g(t) dt

Proposition 8.12 Let X,Y be independent random variables and A,B ∈ R. Then the events
{X ∈ A}, {Y ∈ B} are independent, i.e

P(X ∈ A, Y ∈ B) = P(X ∈ A)P(Y ∈ B)

Remark: the converse of this proposition holds too.

8.2 Expected value and variance

Theorem 8.13 Let (X,Y ) be random vector and and g : R2 → R, then

E[g(X,Y )] =

{∑
x

∑
y g(x, y) · fX,Y (x, y) if X is discrete∫∞

−∞
∫∞
−∞ g(x, y) · fX,Y (x, y) dx dy if X has pdf fX

Theorem 8.14 Linearity & Monotonility Let (X,Y ) be a random vector, then

1. let a, b ∈ R, then E(aX + bY ) = aE(X) + bE(Y )

2. if P(X ≥ Y ) = 1, then E(X) ≥ E(Y )
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Proposition 8.15 If X and Y are independent, then for any g an d h we have

E(g(X)h(Y )) = E(g(X))E(h(Y ))

in particular E(XY ) = E(X)E(Y ) and Var(X + Y ) = Var(X) + Var(Y )

Definition 8.16 If (X,Y ) is a random vector, then

E(X|Y = y) =

{∑
x x · fX|Y (x|y) X discrete∫∞
−∞ x · fX|Y (x|y) dx X continuous

is the conditional expectation of X given that Y = y

Note: Var(X|Y = y) = E(X2|Y = y)− (E(X|Y = y))2

8.3 Transformation

Theorem 8.17 Let X,Y be independent and U = g1(X), V = g2(Y ) for some g1, g2 : R→ R.
Then U, V are independent

Theorem 8.18 pmf Let (X1, X2) be a random vector and g : R2 → R2 and set (Y1, Y2) =
g(X1, X2). Then,

fY1,Y2(y1, y2) =
∑

(x1,x2):g(x1,x2)=(y1,y2)

fX1,X2(x1, x2)

Remark: Same works if g : R2 → R

Theorem 8.19 if X1 ∼ Poi(λ1) and X2 ∼ Poi(λ2) are independent, then X1+X2 ∼ Poi(λ1+
λ2)

Theorem 8.20 pdf of Y = g(X) Let (X1, X2) be continuous random vector and g be dif-
ferentiable with inverse h(y) = g−1(y). Then, for (Y1, Y2) = g(X1, X2) we have

fY1,Y2(y1, y2) = fX1,X2(h(y1, y2)) · |J(y1, y2)|

where

J(y1, y2) = det

(
∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

)

8.4 Covariance and Correlation

Definition 8.21 Let X,Y be random variables. Set µx = E(X) and µy = E(Y ). Then,

Cov(X,Y ) = E[(X − µx)(Y − µy)]

is the covariance of X and Y .
Instead, set σX and σY be the standard deviantion of X,Y respectively. Then,

Corr(X,Y ) = ρX,Y =
Cov(X,Y )

σXσY

is the correlation between X and Y
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Theorem 8.22 1. Cov(X,Y ) = Cov(Y,X)

2. Cov(X,X) = Var(X)

3. ρX,X = 1

4. Cov(X,Y ) = E(XY )− E(X)E(Y )

5. X,Y independent → Cov(X,Y ) = ρX,Y = 0

Lemma 8.23 For any random variable

P(X = 0) = 1⇔ E(X2) = 0

Theorem 8.24 Convariance properties

1. Cov(aX + bY, Z) = aCov(X,Z) + bCov(Y, Z)

2. if X or Y constant, then Cov(X,Y ) = 0

3. ‖Cov(X,Y )‖ ≤ σXσY → Cov(X,Y ) ∈ [−1, 1]

4. Assume σX , σY > 0. Then,

Cov(X,Y ) = σXσY ⇔ X = aY + b for some a > 0, b ∈ R
Cov(X,Y ) = −σXσY ⇔ X = aY + b for some a < 0, b ∈ R

Corollary 8.25 Let ‖ρX,Y ‖ ≤ 1 and

ρX,Y = 1⇔ Y = aX + b , a > 0 ”perfect correlation”

ρX,Y = −1⇔ Y = aX + b , a < 0 ”perfect anti-correlation”

Corollary 8.26 1. Cov
(∑

i≤mXi,
∑

j≤n Yj

)
=
∑

i≤m
∑

j≤n Cov(Xi, Yj)

2. Var
(∑

i≤nXi

)
=
∑

i≤n Var(Xi) + 2
∑

1≤i<j≤n Cov(Xi, Xj)

3. If X1, ..., Xn are independent, then Var
(∑

i≤nXi

)
=
∑

i≤n Var(Xi)

9 Moment generating function

Definition 9.1 The moment generating function of a random variable X is the function

Mx(t) = E(etX) :=

{∑
etXfX(x) X discrete∫∞
−∞ e

tXfX(x) X continuous

provided that the sum/integral converges for all t in an interval of the form (−h, h), h > 0.

Proposition 9.2 Linearity Let X a random variable, and a, b ∈ R, then

MaX+b(t) = ebtMX(at)
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Theorem 9.3 If X,Y are such that MX(t) = MY (t) for all t in some neighborhood of 0,
then FX = FY (that is, X and Y have the same distribution).

Proposition 9.4 If X and Y are independent, then

MX+Y (t) = MX(t)MY (t) for all t ≥ 0.

10 The bivariate normal distribution

Definition 10.1 Let (X,Y ) be a random vector. We say that (X,Y ) is bivariate normal
with parameters µX , µY ∈ R, σX , σY > 0 and ρ ∈ (−1,−1) if it has joint pdf

fX,Y (x, y) =
1

2πσXσY
√

1− ρ2
exp

{
− 1

2(1− ρ2)

((
x− µX
σX

)2

+

(
y − µY
σY

)2

− 2ρ
x− µX
σX

y − µY
σY

)}

we write: (X,Y ) ∼ N ((µX , µY , σ
2
X , σ

2
Y , ρ)

Lemma 10.2 Existence Let Z1 ∼ N (0, 1), Z2 ∼ N (0, 1) be independent. Set

U := σ1Z1 + µ1

V := ρσ2Z1 +
√

1− ρ2σ2Z2 + µ2

then

(U, V ) ∼ N
((

µ1

µ2

)
,

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

))
Proposition 10.3 If (X,Y ) ∼ N (µX , µY , σ

2
X , σ

2
Y , ρ), then

X ∼ N (µX , σ
2
X), Y ∼ N (µY , σ

2
Y ), ρX,Y = ρ.

Corollary 10.4 If (X,Y ) ∼ N (µX , µY , σ
2
X , σ

2
Y , ρ), then

aX + bY ∼ N (aµX + bµY , a
2σ2
X + b2σ2

Y + 2abρσXσY ).

11 Higher dimensions

Definition 11.1 Random vector An n-dimensional random vector is a function from a
sample space Ω into Rn.

Definition 11.2 (Joint pmf) If (X1, ..., Xn) is a discrete random vector, the function

fX1,...,Xn(x1, ..., xn) := P((X1, ..., Xn) = (x1, ..., xn))

is called the joint probability mass function (pmf) of (X1, ..., Xn) (sometimes we omit the
word ”joint” and simply say that fX1,...,Xn is the pmf of the random vector).

Remark: P((X1, ..., Xn) ∈ A) =
∑

(x1,...,xn)∈A fX1,...,Xn(x1, ..., xn)
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Definition 11.3 Joint pdf A random vector (X1, ..., Xn) is continuous if there exists a
function fX1,...,Xn such that

P((X1, ..., Xn) ∈ A) =

∫
· · ·
∫
A
fX1,...,Xn(x1, ..., xn) dx1 · · · dxn

fX1,...,Xn is called the joint probability density function (pdf) of (X1, ..., Xn).

Definition 11.4 Joint cdf The joint cumulative distribution function (cdf) of the random
vector (X1, ..., Xn) is

FX1,...,Xn(x1, ..., xn) = P(X1 ≤ x1, · · · , Xn ≤ xn)

In the continuous case, we have:

fX1,...,Xn(x1, ..., xn) =
∂nFX1,...,Xn

∂x1 · · · ∂xn
(x1, ..., xn)

Definition 11.5 Expectation If (X1, ..., Xn) is a random vector and g : Rn → R, then

E(g(X1, ..., Xn)) =

{∫∞
−∞ · · ·

∫∞
−∞ g(x1, ..., xn)fX1,...,Xn(x1, ..., xn) dx1 · · · dxn in the continuous case∑

x1
· · ·
∑

xn
g(x1, ..., xn)fX1,...,Xn(x1, ..., xn) in the discrete case

Definition 11.6 Conditional pmf/pdf Le (X1, ..., Xn) be a continuous/discrete random
vector. The conditional pmf/pdf of (X1, ..., Xm) given (Xm+1, ..., Xn) is

fX1,...,Xm|(Xm+1,...,Xn(x1, ..., xm|xm+1, ..., xn) =
fX1,...,Xn(x1, ..., xn)

fXm+1,...,Xn(xm+1, ..., xn)

defined for all x1, ..., xm and for all xm+1, ..., xn such that fXm+1,...,Xn(xm+1, ..., xn) > 0.

Definition 11.7 Independence The random variables X1, ..., Xn are independent if

fX1,...,Xn(x1, ..., xn) = fX1(x1) · · · fXn(xn)

(both for discrete and continuous).

Definition 11.8 Joint mgf The joint mgf of a random vector (X1, ..., Xn) is the function
MX1,...,Xn(t1, ..., tn) = E(et1X1+···+tnXn). That is

MX1,...,Xn(t1, ..., tn) =

{∑
et1X1+···+tnXn · fX1,...,Xn(x1, ..., xn) (X1, ..., Xn) discrete∫∞
−∞ e

t1X1+···+tnXn · fX1,...,Xn(x1, ..., xn) dx1 · · · dxn (X1, ..., Xn) continuous

provided that the sum/integral converges in an interval of the form (−h, h)n h > 0
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12 Statistic

Definition 12.1 Random Sample A random sample of size n is a sequence X1, ..., Xn of
independent random variables all with the same pdf/pmf, say say f(x). We thus have

fX1,...,Xn(x1, ..., xn) =
∏

1≤i≤n
fXi(xi)

we say that f is the population pdf/pmf

Remark:

1. There is an infinite population of some entities

2. Each entity has some attribute

3. f describes attribute distribution over the population

4. We select n individuals and record their attributes to obtain X1, ..., Xn

Definition 12.2 Parameter A parameter is a constant that defines the population pmf/pdf
f(x)

Definition 12.3 Statistic A statistic is a function T : Rn → Rof a random sample.

Y = T (X1, ..., Xn)

Definition 12.4 A statistic Y is a unbiased estimator for the parameter θ E(Y ) = θ

Definition 12.5

sample mean : Xn =
X1 + · · ·+Xn

n

sample variance : S2
n =

1

n− 1

∑
i≤n

(Xi −X)2

Lemma 12.6

S2
n =

1

n− 1

∑
i≤n

X2
i −

n

n− 1
X

2
n

Theorem 12.7 Unbiasedness of sample mean variance Let X1, ..., Xn be independent
and identically distributed with mean µ and variance σ2. Then,

1. E(Xn) = µ

2. E(S2
n) = σ2
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12.1 Convergence concepts

The idea is how large should n be such that Xn approximates µ well?

Definition 12.8 A sequence of X1, X2, ... of random variables converges in probability to a
constant c ∈ R if ∀ε > 0:

P(|Xn − c| > ε)→ 0

we write Xn
P−−−→

n→∞
c

Definition 12.9 Let X1, ..., Xn be a random sample of pmf/pdf with parameter θ. We say
that Yn is consistent estimator of θ if

Yn
P−−−→

n→∞
θ

Theorem 12.10 Weak Law of Large Numbers Let X1, X2, ... independent and identically
distributed with E(Xi) = µ and Var(Xi) = σ2 <∞ then

Xn −→
P
µ lim

n→∞
P(|Xn − µ| > ε) = 0

Definition 12.11 converges in distribution A sequence of random variables X1, X2, ...
converges in distribution to a random variable X if

lim
n→∞

FXn(x) = FX(x)

for every x ∈ R at which FX(x) is continuous. We denote this by

Xn
n→∞−−−→
d

X

Lemma 12.12 If X is continuous and Xn
n→∞−−−→
d

X, then

P(Xn = x)
n→∞−−−→ 0

for all x ∈ R

Proposition 12.13 If X is continuous and Xn
n→∞−−−→
d

X, then for every interval I ⊂ R,

lim
n→∞

P(Xn ∈ I) = P(X ∈ I)

Theorem 12.14 Central Limit Theorem Let X1, X2, ... be independent and identically
distributed with mean µ and variance σ2 (both finite). Then,

√
n · X − µ

σ

n→∞−−−→
d

Z, where Z ∼ N (0, 1)

Remarks:
√
n · X − µ

σ
=

∑n
i=1Xi − µn
σ
√
n
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Theorem 12.15 Assume that X1, X2, ... and X are such that

MXn(t)
n→∞−−−→MX(t)

or all t in a neighborhood of 0. Then, Xn
n→∞−−−→
d

X

Theorem 12.16

E(Xn) =
dn

dtn
MX(t)

∣∣∣∣
t=0

Theorem 12.17 Normal approximation to binomial When n is large and p is not too
close to 0 or 1, we have the approximation

X ∼ Bin(n, p) ≈ Y ∼ N (np, np(1− p))

where

P(X ≤ b) ≈
∫ b+ 1

2

−∞
fY (y) dy = FY

(
b+

1

2

)
, P(X ≥ a) ≈

∫ ∞
a− 1

2

fY (y) dy = 1− FY
(
a− 1

2

)
this approximation holds if n ≥ 15, np ≥ 5 and n(1− p) ≥ 5.

Theorem 12.18 Chebyshev Inequality Let X an random variable,

P(|X − E(X)| > x) ≤ Var(X)

x2
, x > 0

13 Random Walk

Definition 13.1 X1, X2, ... independent random variables with values in {−1, 1} set p :=
P(X1 = 1), q := P(X1 = −1) and set S0 ≥ 0. Then, the sequence

Sn := S0 +X1 +X2 + · · ·+Xn

is called simple random walk

Theorem 13.2 pmf of Sn Suppose that n+ k is even. Then,

P(Sn − S0) =

(
n
n+k

2

)
p
n+k
2 q

n−k
2

Definition 13.3 Passage times Let {Sn}n≥0 be a simple random walk with S0 = i. Then,

Ti,k := min{n ≥ 1 : Sn = k}

is the passage time from i to k

Theorem 13.4 Finiteness criterion

P(T <∞) =

{
1 p ≥ q
p
q p < q
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Theorem 13.5 Finite expected passage time If p > q, then E[T ] <∞.

Theorem 13.6 Markov inequality Let a > 0 and Y be any non-negative random variable.
Then,

P(Y ≥ a) ≤ 1

a
E(Y )

Theorem 13.7 pmf of T0,b Let (Sn)n≥0 be simple random walk with S0 = 0. Then, for
b > 0,

P(T0,b = n) =
b

n
P(Sn = b)
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