Probability Theory

Zambelli Lorenzo BSc Applied Mathematics

April 2021-June 2021

1 Introduction

This summaries has been made primly by used the lecture notes [1] with the help of [2] and some websites.

1.1 Element of Set Theory

- 1. Cardinality: numbers of elements of a finite set (its often denoted by #(A)).
- 2. Given subsets $A_1, A_2, ...$ of M their **union** $\bigcup_{j=1}^{\infty} A_j$ and their **intersection** $\bigcap_{j=1}^{\infty} A_j$ is the set of those $x \in M$ that belong to a least one of the A_j or that belong to all A_j , respectively
- 3. Distributive Law:

$$A \cap \left(\bigcup_{j=1}^{\infty} B_j\right) = \bigcup_{j=1}^{\infty} (A \cap B_j)$$

- 4. Two sets A and B are said to be **disjoint** provided that $A \cap B = \emptyset$.
- 5. A sequence of sets A_1, A_2, \dots is called **pairwise disjoint** whenever $A_i \cap A_j = \emptyset$ if $i \neq j$
- 6. The complementary set of $B \subseteq M$ is $B^c := \{x \in M : x \notin B\}$
- 7. Let $A, B \subseteq M$, then the **difference** $A \setminus B$ is defined by $\{w \in M : w \in A \text{ and } w \notin B\}$ or, similarly $A \setminus B = A \cap B^c$
- 8. De Morgan's rules

$$\left(\bigcup_{j=1}^{\infty} A_j\right)^c = \bigcap_{j=1}^{\infty} A_j^c \qquad \left(\bigcap_{j=1}^{\infty} A_j\right)^c = \bigcup_{j=1}^{\infty} A_j^c$$

1.2 Combinatorics

1.2.1 The rules of sum and product

The Rule of Sum and Rule of Product are used to decompose difficult counting problems into simple problems.

• Rule of Sum: If a sequence of tasks $T_1, T_2, ..., T_m$ can be done in $w_1, ..., w_m$ ways respectively (no tasks can be performed simultaneously), then the number of ways to do one of these task is $\sum_{j\geq 1} w_j$, i.e if we consider two task A and B which are disjoint, then $\#(A \cap B) = \#(A) + \#(B)$

• Rule of Product: If we have set of events $A_1, A_2, ...$ where A_1 occur before A_2, A_2 occur before A_3 , and so on, then $\#\left(\prod_{j\geq 1} A_j\right) = \prod_{j\geq 1} \#(A_j)$

1.2.2 Permutations

A **permutation** is an arrangement of some elements in which order matters. In other words a Permutation is an ordered Combination of elements.

1. Let S_n be the set of all permutations of order n. Then how many ways I can rearrange the numbers $\{1, ..., n\}$?

$$\#(S_n) = n!$$

or, equivalently, there are n! different ways to order n distinguishable objects

2. How many ways are there to pick a sequence of k (not necessarily distinct) numbers chosen from 1, ..., n?

 n^k

3. How many ways are there to pick a sequence of k distinct numbers chosen from 1, ..., n? in this case makes sense if $k \le n$

$$(n)_k = \frac{n!}{(n-k)!}$$

4. How many ways can you distribute n objects into one group of k and into another of n - k elements? or How many subsets of $\{1, ..., n\}$ of cardinality exactly k are there?

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

This is called **the binomial coefficients**, read "n chosen k"

5. How many ways are there to draw k balls out of 1, ..., n with replacement but without order?

$$\binom{n+k-1}{k}$$

6. How many ways you can distribute n elements into m groups of sizes $k_1, k_2, ..., k_m$ where $k_1 + \cdots + k_m = n$?

$$\binom{n}{k_1, \dots, k_m} := \frac{n!}{k_1! \cdots k_m!}, \quad k_1 + \dots + k_m = n$$

This is called **multinomial coefficient**, read "*n* chosen k_1 up to k_m "

7. Pascal's triangle

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

1.2.3 Inclusion-Exclusion principle

The Inclusion-exclusion principle computes the cardinal number of the union of multiple non-disjoint sets. For two sets A and B, the principle states

$$#(A \cup B) = #(A) + #(B) - #(A \cap B)$$

the generalized formula

$$\#\left(\bigcup_{i=1}^{n} A_{i}\right) = \sum_{1 \le i < j < k \le n} \#(A_{i} \cap A_{j}) + \sum_{1 \le i < j < k \le n} \#(A_{i} \cap A_{j} \cap A_{k}) - \dots + (-1)^{n-1} \#(A_{1} \cap \dots \cap A_{2})$$

2 Probability Spaces

The basic concern of Probability Theory is to model experiments involving randomness, that is, experiments with nondetermined outcomes, shortly called random experiments.

Definition 2.1 Random experiments are described by probability spaces $(\Omega, \mathbb{A}, \mathbb{P})$

Definition 2.2 The sample space Ω is a nonempty set that contains (at least) all possible outcomes of the random experiment.

Remark: Due to mathematical reasons sometimes it can be useful to choose K larger than necessary. It is only important that the sample space contains all possible results.

Definition 2.3 Any element $w \in \Omega$ is called an **outcome**. Any subset $A \subseteq \Omega$ is called **event**

Definition 2.4 A Probability space is a triple $(\Omega, \mathcal{A}, \mathbb{P})$, where Ω is a sample space, \mathcal{A} is

$$\mathcal{A} = \begin{cases} set \ of \ all \ subsets \ of \ \Omega & if \ \Omega \ is \ countable \\ a \ certain \ set \ of \ subsets \ of \ \Omega & if \ \Omega \ is \ uncountable \end{cases}$$

and $\mathbb{P}: \mathcal{A} \to [0,1]$ is a probability measure (probability function)

Definition 2.5 Let Ω be a sample space and let \mathcal{A} be as in definition 2.4. A function \mathbb{P} : $\mathcal{A} \to [0,1]$ is called **probability measure** on (Ω, \mathcal{A}) if

- 1. $\mathbb{P}(\emptyset) = 0$ and $\mathbb{P}(\Omega) = 1$
- 2. if A_1, A_2, \ldots are pairwise disjoint, then

$$\mathbb{P}\left(\bigcup_{i\geq 1}A_i\right) = \sum_{i\geq 1}\mathbb{P}(A_i)$$

This are called Kolmogorov's axioms of probability. (2) is often called sigma-additivity.

Theorem 2.6 First properties of probabilities

- $\mathbb{P}(\emptyset) = 0$
- if $A, B \in \Omega$ satisfy $A \subseteq B$, then $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A)$
- $\mathbb{P}(A^c) = 1 \mathbb{P}(A)$ for any $A \in \Omega$
- $\mathbb{P}(A) \leq 1$ for any A
- $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ (Inclusion-Exclusion principle)
- Probability measures are **monotone**, that is, if $A \subseteq B$ then $\mathbb{P}(A) \leq \mathbb{P}(B)$

Theorem 2.7 Sigma sub-additivity For any $A_1, A_2, ...,$ not necessarily disjoint

$$\mathbb{P}\left(\bigcup_{i\geq 1}A_i\right)\leq \sum_{i\geq 1}\mathbb{P}(A_i)$$

Theorem 2.8 Inclusion-exclusion formula Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and let $A_1, A_2, ..., A_n$ be some (not necessarily disjoint events, then

$$\mathbb{P}\left(\bigcup_{j=1}^{n} A_{j}\right) = \sum_{k=1}^{n} (-1)^{k+1} \sum_{1 \le j_{1} < \dots < j_{k} \le n} \mathbb{P}(A_{j_{1}} \cap \dots \cap A_{j_{k}})$$

Theorem 2.9 Suppose $\Omega = \{w_1, w_2, ...\}$ and $p_1, p_2, ...$ are non negative numbers with $\sum p_i = 1$. Defining, for all $A \in \Omega$,

$$\mathbb{P}(A) = \sum_{i:w_i \in A} p_i$$

Then \mathbb{P} is a probability measure.

Theorem 2.10 If $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space, Ω is finite and the outcomes $w \in \Omega$ all have the same probability, then, for any $A \in \mathcal{A}$,

$$\mathbb{P}(A) = \frac{\#(A)}{\#(\Omega)}$$

3 Conditional probability and independence

Definition 3.1 Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and A, B events; assume $\mathbb{P}(B) > 0$. Then the probability of A given B is defined by

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Definition 3.2 The mapping $\mathbb{P}(|B)$ is called **conditional probability** or also **conditional** distribution (under condition B)

Remark: The main advadge of this definition is that it implies that conditional probabilities share all the proprieties of ordinary probability measures.

Theorem 3.3 Law of total probability Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space and let $B_1, ..., B_n$ in \mathcal{A} be disjoint with $\mathbb{P}(B_j) > 0$ and $\bigcup_{j=1}^n B_j = \Omega$. Then for each $A \in \mathcal{A}$ holds

$$\mathbb{P}(A) = \sum_{j=1}^{n} \mathbb{P}(B_j) \mathbb{P}(A|B_j)$$

Theorem 3.4 Bayes' formula Suppose we are given disjoint events B_1 to B_n satisfying $\bigcup_{j=1}^n B_j = \Omega$ and $\mathbb{P}(B_j) > 0$. Let A be an event with $\mathbb{P}(A) > 0$. Then for each $j \leq n$ the following equation holds:

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(B_j)\mathbb{P}(A|B_j)}{\sum_{i=1}^n \mathbb{P}(B_i)\mathbb{P}(A|B_i)}$$

Remark: in case $\mathbb{P}(A)$ is already known, Bayes's formula simplifies to

$$\mathbb{P}(B_j|A) = \frac{\mathbb{P}(B_j)\mathbb{P}(A|B_j)}{\mathbb{P}(A)}, \quad j = 1, ..., n$$

Definition 3.5 Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Two events A and B in \mathcal{A} are said to be *independent* provided that

$$\mathbb{P}(A \cap B) = \mathbb{P}(A) \cdot \mathbb{P}(B)$$

In the case that this eq. does not hold, the events A and B are said dependent

Definition 3.6 Events $A_1, ..., A_n$ are said to be **pairwise independent** if, whenever $i \neq j$, then

$$\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i)\mathbb{P}(A_j)$$

In other words, for all $1 \le i < j \le 1$ the events A_i and A_j are independent

Definition 3.7 The events $A_1, ..., A_n$ are said to be **mutually independent** provided that for each subset of $I \subseteq \{1, ..., n\}$ we have

$$\mathbb{P}\left(\bigcap_{i\in I}A_i\right) = \prod_{i\in I}\mathbb{P}(A_i)$$

Remark: If $A_1, ..., A_n$ are mutually independent then they are also pairwise independent. However, in general the converse does not hold.

4 Random Variables

The are two ways to model a random experiment. The classical approach is to construct a probability space that describes this experiment. Another way is to choose a random variable X so that the probability of the occurrence of an event $B \in \mathbb{R}$ equals $\mathbb{P}(X \in B)$.

Definition 4.1 Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. A mapping $X : \Omega \to \mathbb{R}$ is called a *(real-valued)*random variable

Remark: $w \in \Omega$ such that X(w) = x is a event.

4.1 Probability Distribution of a Random Variable

Suppose we are given a random variable $X : \Omega \to \mathbb{R}$. We define now a mapping \mathbb{P}_X from \mathcal{A} to [0, 1] as follows:

$$\mathbb{P}_X(B) := \mathbb{P}(X^{-1}(B)) = \mathbb{P}(w \in \Omega : X(w) \in B) = \mathbb{P}(X \in B)$$

Definition 4.2 Two random variables X_1 and X_2 are said to be **identically distributed** provided that $\mathbb{P}_{X_1} = \mathbb{P}_{X_2}$. Hereby, it is not necessary that X_1 and X_2 are defined on the same sample space. Only their distributions have to coincide.

Definition 4.3 Let X be a random variable, either discrete or continuous. Then its cumulative distribution function $F_X : \mathbb{R} \to [0,1]$ is defined by

$$F_X(x) = \mathbb{P}(X \le x)$$

Theorem 4.4 The distribution function F_X of the random variable X satisfies:

- 1. $F_X(-\infty) = 0$ and $F_X(\infty) = 1$
- 2. F_X is nondecreasing
- 3. F_X is continuous from the right

Lemma 4.5 $\mathbb{P}(X = x) = F_X(x) - \lim_{y \nearrow x} F_X(y).$

4.1.1 Discrete Random Variable

Definition 4.6 A random variable X is **discrete** provided there exists an at most countably infinite set $D \subset \mathbb{R}$ such that $X : \Omega \to D$.

In other words, a random variable is discrete if it attains at most countably infinite many different values.

Remark: If a random variable X is discrete with values in $D \subset \mathbb{R}$, then $\mathbb{P}_X(D) = \mathbb{P}(X \in D) = 1$.

Without losing generality we may always assume the following: if a random variable X has a discrete probability distribution, that is, $\mathbb{P}(X \in D) = 1$ for some finite or countably infinite set D, then X attains values in D.

Definition 4.7 Let X be a discrete random variable, then the **probability mass function** of X is defined as follows

$$f_X(x) = \mathbb{P}(X = x)$$
 for all x

Remark: Note that if X is discrete, then

$$F_X(x) = \mathbb{P}(X \le x) = \sum_{y \le x} \mathbb{P}(X = y) = \sum_{y \le x} f_X(y)$$

4.1.2 Continuous random variables

Definition 4.8 A random variable X is said to be **continuous** provided that its distribution \mathbb{P}_X is a continuous probability measure. That is, \mathbb{P}_X possesses a **probability density function**, or pdf. Or a X is continuous if its cumulative distribution function $F_X(x)$ is continuous, i.e $\mathbb{P}(X = x) = 0$.

Definition 4.9 A pdf function of a continuous random variable X is a function $f_X : \mathbb{R} \to [0,\infty)$ that satisfies

$$\mathbb{P}(X \le x) = F_X(x) = \int_{-\infty}^x f_X(y) \, dy \quad \text{for all } x \in \mathbb{R}$$

Remark: for all real numbers a < b

$$\mathbb{P}(a \le X \le b) = F_X(x) = \int_a^b f_X(y) \, dy$$

Remark: If X is continuous the following are equal

$$\mathbb{P}(a \le X \le b) = \mathbb{P}(a < X \le b) = \mathbb{P}(a \le X < b) = \mathbb{P}(a < X < b)$$

and $\mathbb{P}(-\infty X < \infty) = 1$

4.2 Function of random variable

Let $g: \mathbb{R} \to \mathbb{R}$ and let Y, X be random variables. Let Y = g(X), then

Definition 4.10 cdf

$$F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le y) = \mathbb{P}(X \in g^{-1}((-\infty, y]))$$

Remark: if X discrete, then $F_Y(y) = \sum_{x \in g^{-1}} f_X(x)$. Instead if its continuous the integral.

Theorem 4.11

1. If Y = g(X) and g is strictly increasing, then $F_Y(y) = F_X(g^{-1}(y))$

2. If g is strictly decreasing and X is continuous, then $F_Y(y) = 1 - F_X(g^{-1}(y))$

Definition 4.12 pmf

$$f_Y(y) = \mathbb{P}(Y = y) = \mathbb{P}(g(X) = y) = \mathbb{P}(X \in g^{-1}(y)) = \sum_{x \in g^{-1}(y)} f_X(x)$$

Definition 4.13 *pdf* Assume X has pdf f_X and Y = g(X) with g differentiable and strictly increasing or decreasing. Then

$$f_Y(y) = f_X(g^{-1}(y)) \cdot \left| \frac{d}{dy} g^{-1}(y) \right|$$

5 Expected Value and Variance

5.1 Expected Value

Definition 5.1 *Expectation* The expectation (or expected value or mean) of a random variable X is

$$\mathbb{E}[x] = \begin{cases} \sum_{x} x \cdot f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x \cdot f_X(x) \, dx & \text{if } X \text{ has pdf } f_X \end{cases}$$

provided that the sum or integral exists.

Remark: Since $x_i \mathbb{P}(X = x_i) \ge 0$ and $x f_X(x) \ge 0$ (for continuous) for non-negative X, for those random variables the sum and the integral is always well-defined, but may be infinite.

Theorem 5.2 For $g : \mathbb{R} \to \mathbb{R}$ and a random variable X,

$$\mathbb{E}[g(X)] = \begin{cases} \sum_{x} g(x) \cdot f_X(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} g(x) \cdot f_X(x) \, dx & \text{if } X \text{ has pdf } f_X \end{cases}$$

provided that the sum or integral exists.

Theorem 5.3 if X is a random variable, $a, b, c \in \mathbb{R}$ and $g_1, g_2 : \mathbb{R} \to \mathbb{R}$ such that $\mathbb{E}(g_1(X)), \mathbb{E}(g_2(X))$ exist, then,

- 1. $\mathbb{E}(ag_1(X) + bg_2(X) + c) = a\mathbb{E}(g_1(X)) + b\mathbb{E}(g_2(X)) + c$
- 2. If $g_1 \ge 0$, then $\mathbb{E}(g_1(X)) \ge 0$
- 3. If $g_1 \ge g_2$, then $\mathbb{E}(g_1(X)) \ge \mathbb{E}(g_2(X))$
- 4. If $a \leq g_1(X) \leq b$, then $a \leq \mathbb{E}(g_1(X)) \leq b$

Theorem 5.4 \mathbb{E} through cdf

1. If X is a discrete random variable that only assumes values on $\{0, 1, 2, ...\}$, then

$$\mathbb{E}[X] = \sum_{n \ge 0} (1 - F_X(n))$$

2. If X is a continuous and non-negative random variable, then

$$\mathbb{E}[X] = \int_{o}^{\infty} 1 - F_X(x) \, dx$$

5.2 Variance

Definition 5.5 For a random variable X and an integer n, we define the variance of X:

$$\operatorname{Var}(X) = \mathbb{E}[(X - \mu)^2].$$

where $\mu = \mathbb{E}[X]$.

The positive square root of Var(X) is called the standard deviation of X.

Remark: $\operatorname{Var}(X) = \mathbb{E}[X^2] - \mu^2$

Interpretation: The expected value μ of a random variable is its main characteristic. It tells us around which value the observations of X have to be expected. But it does not tell us how far away from μ these observation will be on average. Are they concentrated around μ or are they widely dispersed? This behavior is described by the variance. It is defined as the average quadratic distance of X to its mean value. If Var(X) is small, then we will observe realizations of X quite near to its mean. Otherwise it is likely to observe values of X fa away from its expected value.

Theorem 5.6 If X is a random variable and a, b are constants,

$$\operatorname{Var}(aX + b) = a^2 \operatorname{Var}(X)$$

6 Discrete distributions

6.1 Discrete uniform distribution

Let a, b integers, a < b. A random variable X follows a discrete uniform distribution with parameters a and b (abbreviated: $X \sim \text{Unif}(a, b)$) if

$$f_X(x) = \frac{1}{b-a+1}, \quad x = a, a+1, ..., b$$

(in words: X is equally likely to be equal to any of the integer between (and including) a and b).

1. Expectation: $\mathbb{E}(X) = \frac{a+b}{2}$

2. Variance $Var(X) = \frac{(b-a+1)^2-1}{12}$

6.2 Bernoulli distribution

Let $\mathbb{P} \in [0,1]$. X follows a Bernoulli distribution with parameter p, that is, $X \sim \text{Ber}(p)$ if

$$f_X(1) = p; \quad f_X(0) = 1 - p$$

- 1. $\mathbb{E}(X) = 0 \cdot (1-p) + 1 \cdot p = p$
- 2. $\operatorname{Var}(X) = \mathbb{E}[X^2] \mu^2 = p p^2 = p(1-p)$

Remark: A <u>Bernoulli trial</u> is an experiment which results in success with probability p and failure with 1 - p. X is then 1 when there is success and 0 when there is failure.

6.3 Binomial distribution

The sample space is $\Omega = \{0, 1, ..., n\}$ for some $n \ge 1$ and p is a real number with $0 \le p \le 1$

Definition 6.1 The probability measure Bin(n, p) defined by

$$\mathbb{P}(X=x) = f_X(x) = \binom{n}{x} p^x (1-p)^{n-x}, \quad x = 0, 1, ..., n$$

where f_X is the pmf of X, is called **binomial distribution** with parameters n and p

Remark: if $A \subseteq \{0, 1, ..., n\}$, then

$$\operatorname{Bin}_{n,p}(A) = \sum_{k \in A} \binom{n}{k} p^k (1-p)^{n-k}$$

- 1. Expectation: $\mathbb{E}(X) = np$
- 2. Variance: Var(X) = np(1-p)

Remark: The binomial distribution describes the following experiment. We execute n times independently the same experiment where each time either success or failure may appear. The success probability is p. Then Bin(n, p) of X = x is the probability to observe exactly x times success or, equivalently, n - x times failure.

Theorem 6.2 Binomial theorem

$$(a+b)^n = \sum_{0 \le k \le n} \binom{n}{k} a^{n-k} b^k$$

6.4 Geometric distribution

Suppose we perform Bernoulli trials with probability p of success until the first success is obtain. Let X be the numbers of trials needed for observe success for the first time. Then, for $x \in \{1, 2, ...\}$,

$$f_X(x) = \mathbb{P}(X = x) = (1 - p)^{x - 1}p$$

we say that X follows a geometric distribution with parameter $p, X \sim \text{Geo}(p)$

- 1. Expectation: $\mathbb{E}(X) = \frac{1}{p}$
- 2. Variance: $Var(X) = (1-p)/p^2$

6.5 Poisson distribution

Let $\lambda > 0$. A random variable X follows the Poisson distribution with parameter λ , $X \sim Poi(\lambda)$ if

$$f_X(k) = \frac{\lambda^k}{k!} e^{-\lambda} \quad k = 0, 1, \dots$$

Remark: note that $\sum_{x>0} f_X(k) = 1$

- 1. Expectation: $\mathbb{E}[X] = \sum_{k \ge 0} k \cdot \frac{\lambda^k}{k!} e^{-\lambda} = \lambda$
- 2. Variance: $Var(X) = \lambda$

Poisson approximation to Binomial: this is an approximation which can be summarized by: Bin(n, p) is close to $Poi(\lambda)$ when n is large, p is small and np is close to λ .

Proposition 6.3 Assume $(p_n)_{n \in \mathbb{N}}$ is a sequence such that

$$p_n \in [0,1]$$
 for each n and $\lim_{n \to \infty} np_n = \lambda > 0.$

Then, for each $k \in \mathbb{N}$,

$$\underbrace{\binom{n}{k} p_n^k (1-p_n)^{n-k}}_{f_X(k) \text{ for } X \sim \operatorname{Bin}(n,p_n)} \xrightarrow{n \to \infty} \underbrace{\frac{\lambda^k}{k!} e^{-\lambda}}_{f_X \text{ for } X \sim \operatorname{Poi}(\lambda)}$$

Remark: The Poisson distribution describes experiments where the number of trials is big, but the single success probability is small.

7 Continuous distributions

7.1 Uniform distribution

 $a, b \in \mathbb{R}, a < b$. A random variable X follows a continuous uniform distribution between a and b if it has pdf

$$f_X(x) = \frac{1}{b-a}$$
 if $x \in (a,b)$

and it is called **uniform random variable**.

- 1. Expectation: $\mathbb{E}[X] = \int_a^b x \cdot \frac{1}{b-a} dx = \frac{b+a}{2}$
- 2. Variance: $\operatorname{Var}(X) = \int_{a}^{b} \left(x \frac{b+a}{2}\right)^{2} \cdot \frac{1}{b-a} \, dx = \frac{(b-a)^{2}}{12}$

7.2 Exponential distribution

Idea: "waiting time until next"

Remark:The exponential distribution plays an important role for the description of lifetimes. For instance, it is used to determine the probability that the lifetime of a component part or the duration of a phone call exceeds a certain time T \downarrow 0. Furthermore, it is applied to describe the time between the arrivals of customers at a counter or in a shop.

Let $\lambda > 0$. A random variable X with pdf

$$X \sim \operatorname{Exp}(\lambda) \Rightarrow f_X(x) = \lambda e^{-x\lambda}, \quad x > 0$$

Remark: $F_x = \int_{-\infty}^x f_X(x) \, dx = 1 - e^{-x\lambda}$ if x > 0

- 1. Expectation: $\mathbb{E}[X] = \frac{1}{\lambda}$
- 2. Variance: $Var(X) = \frac{1}{\lambda^2}$

This distribution is **memoryless**, i.e. $\mathbb{P}(X > s + t | X > s) = \mathbb{P}(X > t)$ when $X \sim \operatorname{Exp}(\lambda), s, t > 0$

7.3 Gamma distribution

Idea: "Make exponential distribution more flexible"

Euler's gamma function is a mapping from $(0,\infty)$ to \mathbb{R} defined by

$$\Gamma(a) = \int_0^\infty t^{a-1} \cdot e^{-t} \, dt$$

Proposition 7.1

1. if a > 0, then $\Gamma(a + 1) = a\Gamma(a)$

2. For $n \in \mathbb{N}$ follows $\Gamma(n) = (n-1)!$. In particular, $\Gamma(1) = \Gamma(2) = 1$ and $\Gamma(3) = 2$. Given $\alpha, \beta > 0$, a random variable $X \sim \Gamma(\alpha, \beta)$ if

$$f_X(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot x^{\alpha-1} \cdot e^{-x\beta} & \text{if } x > 0\\ 0 & \text{otherwise} \end{cases}$$

Note: the exponential distribution with parameter λ is the $\Gamma(1, \lambda)$ distribution.

1. Expectation:

$$\mathbb{E}(x) = \frac{\Gamma(\alpha+1)\beta^{\alpha}}{\Gamma(\alpha)\beta^{\alpha+1}} = \frac{\alpha}{\beta}$$

2. Variance: $Var(X) = \alpha/\beta^2$

7.4 Normal (or Gaussian) distribution

This section is devoted to the most important probability measure, the normal distribution. The idea is the "universal approximation for averages".

The normal distribution has a bell-shape density function and is used in the sciences to represent real-valued random variables that are assumed to be additively produced by many small effects.

Definition 7.2 The probability measure generated by

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \cdot e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

is called normal distribution with expected value μ , and standard deviation σ . It is denoted by $\mathcal{N}(\mu, \sigma^2)$, that is, for all a < b

$$\mathcal{N}(\mu, \sigma^2)([a, b]) = \frac{1}{\sqrt{2\pi\sigma}} \int_a^b e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx$$

Definition 7.3 The probability measure $\mathcal{N}(0,1)$ is called standard normal distribution. It is given by

$$\mathcal{N}(0,1)([a,b]) = \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{x^2}{2}} dx$$

Proposition 7.4 if $X \sim \mathcal{N}(\mu, \sigma^2)$ and Y = aX + b with $a \neq 0$, then $Y \sim \mathcal{N}(a\mu + b, a^2\sigma^2)$ **Remark:** if $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X - \mu}{\sigma} \sim \mathcal{N}(0, 1)$.

8 Random Vectors

Definition 8.1 An 2-dimensional random vector is a function from a sample space Ω into \mathbb{R}^2 .

Definition 8.2 If (X, Y) is a discrete random vector, the function

$$f_{X,Y}(x,y) = \mathbb{P}((X,Y) = (x,y))$$

is called the joint probability mass function of (X, Y)

Key propery: $A \in \mathbb{R}^2$, then $\mathbb{P}((X,Y) \in A) = \sum_{(X,Y)\in A} f_{X,Y}(x,y)$

Definition 8.3 A random vector (X, Y) is continuous if there exists a function $f_{X,Y} : \mathbb{R}^2 \to [0, \infty)$ such that

$$\mathbb{P}((X,Y) \in A) = \iint_A f_{X,Y}(x,y) \, dx \, dy$$

and its called the joint pdf of (X, Y)

Definition 8.4 The joint cumulative distribution of the random vector (X, Y) is

$$F_{X,Y}(x,y) = \mathbb{P}(X \le x, Y \le y)$$

Note: in the continuous case, we have for continuous $f_{X,Y}$:

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$

Definition 8.5 Let X be a continuous random variable and Y be a discrete random variable. Then, a function $f_{X,Y} : \mathbb{R}^2 \to [0,\infty)$ is called joint probability density function if

$$\mathbb{P}((X,Y) \in A) = \int_{\mathbb{R}} \sum_{y:(x,y) \in A} f_{X,Y}(x,y) \, dx$$

Definition 8.6 marginal pmf Let $f_{X,Y}(x,y)$ be a pmf for a random vector (X,Y), then

$$f_X(x,y) = \sum_y f_{X,Y}(x,y)$$
$$f_Y(x,y) = \sum_x f_{X,Y}(X,Y)$$

are the marginal pmf respect to x and y respectively.

Definition 8.7 marginal pdf Let $f_{X,Y}(x,y)$ be a pdf for a random vector (X,Y), then

$$f_X(x,y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y)dy$$
$$f_Y(x,y) = \int_{-\infty}^{\infty} f_{X,Y}(X,Y)dx$$

are the marginal pdf respect to x and y respectively.

8.1 Conditional distribution & independence

Definition 8.8 conditional pmf Let (X, Y) be a discrete random vector with joint pmf $f_{X,Y}$ and marginals f_X and f_Y . The conditional pmf of X given Y is the function

$$f_{X|Y}(x|y) = \mathbb{P}(X = x|Y = y) = \frac{\mathbb{P}(X = x, Y = y)}{\mathbb{P}(Y = y)}$$

defined for all y such that $f_Y(y) \neq 0$

Definition 8.9 Conditional pdf Let (X, Y) be continuous random variables with pdf $f_{X,Y}(x, y)$, then

$$f_{X|Y}(x|y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$

is the conditional pdf of X given Y.

Remark: this definition holds also in the mixed case, i.e X continuous and Y discrete.

Definition 8.10 Two random variables X, Y are independent if

$$f_{X,Y} = f_X(x) \cdot f_Y(y)$$

both for discrete and continuous.

Proposition 8.11 Factorization criterion Let two function $g, h : \mathbb{R} \to [0, \infty)$ such that

$$f_{X,Y}(x,y) = g(x) \cdot h(y)$$

then X, Y are independent and

$$f_X(x) = \frac{g(x)}{\int_{-\infty}^{\infty} g(s) \, ds} \quad f_Y(y) = \frac{h(y)}{\int_{-\infty}^{\infty} g(t) \, dt}$$

Proposition 8.12 Let X, Y be independent random variables and $A, B \in \mathbb{R}$. Then the events $\{X \in A\}, \{Y \in B\}$ are independent, i.e

$$\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A)\mathbb{P}(Y \in B)$$

Remark: the converse of this proposition holds too.

8.2 Expected value and variance

Theorem 8.13 Let (X, Y) be random vector and and $g : \mathbb{R}^2 \to \mathbb{R}$, then

$$\mathbb{E}[g(X,Y)] = \begin{cases} \sum_{x} \sum_{y} g(x,y) \cdot f_{X,Y}(x,y) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \cdot f_{X,Y}(x,y) \, dx \, dy & \text{if } X \text{ has } pdf \, f_X \end{cases}$$

Theorem 8.14 Linearity & Monotonility Let (X, Y) be a random vector, then

1. let
$$a, b \in \mathbb{R}$$
, then $\mathbb{E}(aX + bY) = a\mathbb{E}(X) + b\mathbb{E}(Y)$

2. if $\mathbb{P}(X \ge Y) = 1$, then $\mathbb{E}(X) \ge \mathbb{E}(Y)$

Proposition 8.15 If X and Y are independent, then for any g and h we have

$$\mathbb{E}(g(X)h(Y)) = \mathbb{E}(g(X))\mathbb{E}(h(Y))$$

in particular $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$ and $\operatorname{Var}(X+Y) = \operatorname{Var}(X) + \operatorname{Var}(Y)$

Definition 8.16 If (X, Y) is a random vector, then

$$\mathbb{E}(X|Y=y) = \begin{cases} \sum_{x} x \cdot f_{X|Y}(x|y) & X \text{ discrete} \\ \int_{-\infty}^{\infty} x \cdot f_{X|Y}(x|y) \, dx & X \text{ continuous} \end{cases}$$

is the conditional expectation of X given that Y = y

Note: $\operatorname{Var}(X|Y=y) = \mathbb{E}(X^2|Y=y) - (\mathbb{E}(X|Y=y))^2$

8.3 Transformation

Theorem 8.17 Let X, Y be independent and $U = g_1(X)$, $V = g_2(Y)$ for some $g_1, g_2 : \mathbb{R} \to \mathbb{R}$. Then U, V are independent

Theorem 8.18 *pmf* Let (X_1, X_2) be a random vector and $g : \mathbb{R}^2 \to \mathbb{R}^2$ and set $(Y_1, Y_2) = g(X_1, X_2)$. Then,

$$f_{Y_1,Y_2}(y_1,y_2) = \sum_{(x_1,x_2):g(x_1,x_2)=(y_1,y_2)} f_{X_1,X_2}(x_1,x_2)$$

Remark: Same works if $g : \mathbb{R}^2 \to \mathbb{R}$

Theorem 8.19 if $X_1 \sim \text{Poi}(\lambda_1)$ and $X_2 \sim \text{Poi}(\lambda_2)$ are independent, then $X_1 + X_2 \sim \text{Poi}(\lambda_1 + \lambda_2)$

Theorem 8.20 pdf of Y = g(X) Let (X_1, X_2) be continuous random vector and g be differentiable with inverse $h(y) = g^{-1}(y)$. Then, for $(Y_1, Y_2) = g(X_1, X_2)$ we have

$$f_{Y_1,Y_2}(y_1,y_2) = f_{X_1,X_2}(h(y_1,y_2)) \cdot |J(y_1,y_2)|$$

where

$$J(y_1, y_2) = \det \begin{pmatrix} \frac{\partial h_1}{\partial y_1} & \frac{\partial h_1}{\partial y_2} \\ \frac{\partial h_2}{\partial y_1} & \frac{\partial h_2}{\partial y_2} \end{pmatrix}$$

8.4 Covariance and Correlation

Definition 8.21 Let X, Y be random variables. Set $\mu_x = \mathbb{E}(X)$ and $\mu_y = \mathbb{E}(Y)$. Then,

 $Cov(X, Y) = \mathbb{E}[(X - \mu_x)(Y - \mu_y)]$

is the covariance of X and Y.

Instead, set σ_X and σ_Y be the standard deviantion of X, Y respectively. Then,

$$\operatorname{Corr}(X, Y) = \rho_{X,Y} = \frac{\operatorname{Cov}(X, Y)}{\sigma_X \sigma_Y}$$

is the correlation between X and Y

Theorem 8.22 1. Cov(X, Y) = Cov(Y, X)

- 2. $\operatorname{Cov}(X, X) = \operatorname{Var}(X)$
- 3. $\rho_{X,X} = 1$

4.
$$\operatorname{Cov}(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

5. X, Y independent $\rightarrow \text{Cov}(X, Y) = \rho_{X,Y} = 0$

Lemma 8.23 For any random variable

$$\mathbb{P}(X=0) = 1 \Leftrightarrow \mathbb{E}(X^2) = 0$$

Theorem 8.24 Convariance properties

- 1. $\operatorname{Cov}(aX + bY, Z) = a \operatorname{Cov}(X, Z) + b \operatorname{Cov}(Y, Z)$
- 2. if X or Y constant, then Cov(X, Y) = 0
- 3. $\|\operatorname{Cov}(X,Y)\| \leq \sigma_X \sigma_Y \to \operatorname{Cov}(X,Y) \in [-1,1]$
- 4. Assume $\sigma_X, \sigma_Y > 0$. Then,

 $\operatorname{Cov}(X,Y) = \sigma_X \sigma_Y \Leftrightarrow X = aY + b \text{ for some } a > 0, b \in \mathbb{R}$ $\operatorname{Cov}(X,Y) = -\sigma_X \sigma_Y \Leftrightarrow X = aY + b \text{ for some } a < 0, b \in \mathbb{R}$

Corollary 8.25 Let $\|\rho_{X,Y}\| \leq 1$ and

 $\rho_{X,Y} = 1 \Leftrightarrow Y = aX + b \quad , a > 0 \quad "perfect \ correlation" \\
\rho_{X,Y} = -1 \Leftrightarrow Y = aX + b \quad , a < 0 \quad "perfect \ anti-correlation"$

Corollary 8.26 1. $\operatorname{Cov}\left(\sum_{i \le m} X_i, \sum_{j \le n} Y_j\right) = \sum_{i \le m} \sum_{j \le n} \operatorname{Cov}(X_i, Y_j)$ 2. $\operatorname{Var}\left(\sum_{i \le n} X_i\right) = \sum_{i \le n} \operatorname{Var}(X_i) + 2\sum_{1 \le i < j \le n} \operatorname{Cov}(X_i, X_j)$

3. If $X_1, ..., X_n$ are independent, then $\operatorname{Var}\left(\sum_{i \leq n} X_i\right) = \sum_{i \leq n} \operatorname{Var}(X_i)$

9 Moment generating function

Definition 9.1 The moment generating function of a random variable X is the function

$$M_x(t) = \mathbb{E}(e^{tX}) := \begin{cases} \sum e^{tX} f_X(x) & X \ discrete \\ \int_{-\infty}^{\infty} e^{tX} f_X(x) & X \ continuous \end{cases}$$

provided that the sum/integral converges for all t in an interval of the form (-h, h), h > 0.

Proposition 9.2 *Linearity Let* X *a random variable, and* $a, b \in \mathbb{R}$ *, then*

$$M_{aX+b}(t) = e^{bt} M_X(at)$$

Theorem 9.3 If X, Y are such that $M_X(t) = M_Y(t)$ for all t in some neighborhood of 0, then $F_X = F_Y$ (that is, X and Y have the same distribution).

Proposition 9.4 If X and Y are independent, then

$$M_{X+Y}(t) = M_X(t)M_Y(t) \quad for \ all \ t \ge 0.$$

10 The bivariate normal distribution

Definition 10.1 Let (X, Y) be a random vector. We say that (X, Y) is **bivariate normal** with parameters $\mu_X, \mu_Y \in \mathbb{R}, \sigma_X, \sigma_Y > 0$ and $\rho \in (-1, -1)$ if it has joint pdf

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}} \exp\left\{-\frac{1}{2(1-\rho^2)}\left(\left(\frac{x-\mu_X}{\sigma_X}\right)^2 + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2 - 2\rho\frac{x-\mu_X}{\sigma_X}\frac{y-\mu_Y}{\sigma_Y}\right)\right\}$$

we write: $(X, Y) \sim \mathcal{N}((\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$

Lemma 10.2 Existence Let $Z_1 \sim \mathcal{N}(0,1)$, $Z_2 \sim \mathcal{N}(0,1)$ be independent. Set

$$U := \sigma_1 Z_1 + \mu_1$$
$$V := \rho \sigma_2 Z_1 + \sqrt{1 - \rho^2} \sigma_2 Z_2 + \mu_2$$

then

$$(U,V) \sim \mathcal{N}\left(\begin{pmatrix}\mu_1\\\mu_2\end{pmatrix}, \begin{pmatrix}\sigma_1^2 & \rho\sigma_1\sigma_2\\\rho\sigma_1\sigma_2 & \sigma_2^2\end{pmatrix}\right)$$

Proposition 10.3 If $(X, Y) \sim \mathcal{N}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$, then

$$X \sim \mathcal{N}(\mu_X, \sigma_X^2), \quad Y \sim \mathcal{N}(\mu_Y, \sigma_Y^2), \quad \rho_{X,Y} = \rho.$$

Corollary 10.4 If $(X, Y) \sim \mathcal{N}(\mu_X, \mu_Y, \sigma_X^2, \sigma_Y^2, \rho)$, then

 $aX + bY \sim \mathcal{N}(a\mu_X + b\mu_Y, a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y).$

11 Higher dimensions

Definition 11.1 Random vector An n-dimensional random vector is a function from a sample space Ω into \mathbb{R}^n .

Definition 11.2 (Joint pmf) If $(X_1, ..., X_n)$ is a discrete random vector, the function

$$f_{X_1,...,X_n}(x_1,...,x_n) := \mathbb{P}((X_1,...,X_n) = (x_1,...,x_n))$$

is called the joint probability mass function (pmf) of $(X_1, ..., X_n)$ (sometimes we omit the word "joint" and simply say that $f_{X_1,...,X_n}$ is the pmf of the random vector).

Remark: $\mathbb{P}((X_1, ..., X_n) \in A) = \sum_{(x_1, ..., x_n) \in A} f_{X_1, ..., X_n}(x_1, ..., x_n)$

Definition 11.3 Joint pdf A random vector $(X_1, ..., X_n)$ is continuous if there exists a function $f_{X_1,...,X_n}$ such that

$$\mathbb{P}((X_1,...,X_n) \in A) = \int \cdots \int_A f_{X_1,...,X_n}(x_1,...,x_n) \, dx_1 \cdots \, dx_n$$

 $f_{X_1,...,X_n}$ is called the joint probability density function (pdf) of $(X_1,...,X_n)$.

Definition 11.4 Joint cdf The joint cumulative distribution function (cdf) of the random vector $(X_1, ..., X_n)$ is

$$F_{X_1,\dots,X_n}(x_1,\dots,x_n) = \mathbb{P}(X_1 \le x_1,\cdots,X_n \le x_n)$$

In the continuous case, we have:

$$f_{X_1,\dots,X_n}(x_1,\dots,x_n) = \frac{\partial^n F_{X_1,\dots,X_n}}{\partial x_1 \cdots \partial x_n}(x_1,\dots,x_n)$$

Definition 11.5 *Expectation* If $(X_1, ..., X_n)$ is a random vector and $g : \mathbb{R}^n \to \mathbb{R}$, then

$$\mathbb{E}(g(X_1,...,X_n)) = \begin{cases} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,...,x_n) f_{X_1,...,X_n}(x_1,...,x_n) \, dx_1 \cdots dx_n & \text{in the continuous case} \\ \sum_{x_1} \cdots \sum_{x_n} g(x_1,...,x_n) f_{X_1,...,X_n}(x_1,...,x_n) & \text{in the discrete case} \end{cases}$$

Definition 11.6 Conditional pmf/pdf Le $(X_1, ..., X_n)$ be a continuous/discrete random vector. The conditional pmf/pdf of $(X_1, ..., X_m)$ given $(X_{m+1}, ..., X_n)$ is

$$f_{X_1,\dots,X_m|(X_{m+1},\dots,X_n}(x_1,\dots,x_m|x_{m+1},\dots,x_n) = \frac{f_{X_1,\dots,X_n}(x_1,\dots,x_n)}{f_{X_{m+1},\dots,X_n}(x_{m+1},\dots,x_n)}$$

defined for all $x_1, ..., x_m$ and for all $x_{m+1}, ..., x_n$ such that $f_{X_{m+1}, ..., X_n}(x_{m+1}, ..., x_n) > 0$.

Definition 11.7 Independence The random variables $X_1, ..., X_n$ are independent if

$$f_{X_1,...,X_n}(x_1,...,x_n) = f_{X_1}(x_1)\cdots f_{X_n}(x_n)$$

(both for discrete and continuous).

Definition 11.8 Joint mgf The joint mgf of a random vector $(X_1, ..., X_n)$ is the function $M_{X_1,...,X_n}(t_1, ..., t_n) = \mathbb{E}(e^{t_1X_1+\cdots+t_nX_n})$. That is

$$M_{X_1,...,X_n}(t_1,...,t_n) = \begin{cases} \sum e^{t_1 X_1 + \dots + t_n X_n} \cdot f_{X_1,...,X_n}(x_1,...,x_n) & (X_1,...,X_n) & discrete \\ \int_{-\infty}^{\infty} e^{t_1 X_1 + \dots + t_n X_n} \cdot f_{X_1,...,X_n}(x_1,...,x_n) & dx_1 \cdots dx_n & (X_1,...,X_n) & continuous \end{cases}$$

provided that the sum/integral converges in an interval of the form $(-h,h)^n$ h > 0

12 Statistic

Definition 12.1 Random Sample A random sample of size n is a sequence $X_1, ..., X_n$ of independent random variables all with the same pdf/pmf, say say f(x). We thus have

$$f_{X_1,...,X_n}(x_1,...,x_n) = \prod_{1 \le i \le n} f_{X_i}(x_i)$$

we say that f is the population pdf/pmf

Remark:

- 1. There is an infinite population of some entities
- 2. Each entity has some attribute
- 3. f describes attribute distribution over the population
- 4. We select n individuals and record their attributes to obtain $X_1, ..., X_n$

Definition 12.2 *Parameter* A parameter is a constant that defines the population pmf/pdf f(x)

Definition 12.3 *Statistic* A statistic is a function $T : \mathbb{R}^n \to \mathbb{R}$ of a random sample.

$$Y = T(X_1, \dots, X_n)$$

Definition 12.4 A statistic Y is a unbiased estimator for the parameter $\theta \mathbb{E}(Y) = \theta$

Definition 12.5

sample mean :
$$\overline{X}_n = \frac{X_1 + \dots + X_n}{n}$$

sample variance : $S_n^2 = \frac{1}{n-1} \sum_{i \le n} (X_i - \overline{X})^2$

Lemma 12.6

$$S_n^2 = \frac{1}{n-1} \sum_{i < n} X_i^2 - \frac{n}{n-1} \overline{X}_n^2$$

Theorem 12.7 Unbiasedness of sample mean variance Let $X_1, ..., X_n$ be independent and identically distributed with mean μ and variance σ^2 . Then,

- 1. $\mathbb{E}(\overline{X}_n) = \mu$
- 2. $\mathbb{E}(S_n^2) = \sigma^2$

12.1 Convergence concepts

The idea is how large should n be such that \overline{X}_n approximates μ well?

Definition 12.8 A sequence of $X_1, X_2, ...$ of random variables converges in probability to a constant $c \in \mathbb{R}$ if $\forall \epsilon > 0$:

$$\mathbb{P}(|X_n - c| > \epsilon) \to 0$$

we write $X_n \xrightarrow[n \to \infty]{\mathbb{P}} c$

Definition 12.9 Let $X_1, ..., X_n$ be a random sample of pmf/pdf with parameter θ . We say that Y_n is consistent estimator of θ if

$$Y_n \xrightarrow[n \to \infty]{\mathbb{P}} \theta$$

Theorem 12.10 Weak Law of Large Numbers Let $X_1, X_2, ...$ independent and identically distributed with $\mathbb{E}(X_i) = \mu$ and $\operatorname{Var}(X_i) = \sigma^2 < \infty$ then

$$\overline{X}_n \xrightarrow[\mathbb{P}]{} \mu \quad \lim_{n \to \infty} \mathbb{P}(|\overline{X}_n - \mu| > \epsilon) = 0$$

Definition 12.11 converges in distribution A sequence of random variables $X_1, X_2, ...$ converges in distribution to a random variable X if

$$\lim_{n \to \infty} F_{X_n}(x) = F_X(x)$$

for every $x \in \mathbb{R}$ at which $F_X(x)$ is continuous. We denote this by

$$X_n \xrightarrow[d]{n \to \infty} X$$

Lemma 12.12 If X is continuous and $X_n \xrightarrow{n \to \infty}{d} X$, then

$$\mathbb{P}(X_n = x) \xrightarrow{n \to \infty} 0$$

for all $x \in \mathbb{R}$

Proposition 12.13 If X is continuous and $X_n \xrightarrow[d]{n \to \infty} X$, then for every interval $I \subset \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}(X_n \in I) = \mathbb{P}(X \in I)$$

Theorem 12.14 Central Limit Theorem Let $X_1, X_2, ...$ be independent and identically distributed with mean μ and variance σ^2 (both finite). Then,

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} \xrightarrow[d]{n \to \infty}{d} Z, \quad where \ Z \sim \mathcal{N}(0, 1)$$

Remarks:

$$\sqrt{n} \cdot \frac{\overline{X} - \mu}{\sigma} = \frac{\sum_{i=1}^{n} X_i - \mu n}{\sigma \sqrt{n}}$$

Theorem 12.15 Assume that X_1, X_2, \dots and X are such that

$$M_{X_n}(t) \xrightarrow{n \to \infty} M_X(t)$$

or all t in a neighborhood of 0. Then, $X_n \xrightarrow{n \to \infty} d X$

Theorem 12.16

$$\mathbb{E}(X^n) = \left. \frac{d^n}{dt^n} M_X(t) \right|_{t=0}$$

Theorem 12.17 Normal approximation to binomial When n is large and p is not too close to 0 or 1, we have the approximation

$$X \sim \operatorname{Bin}(n, p) \approx Y \sim \mathcal{N}(np, np(1-p))$$

where

$$\mathbb{P}(X \le b) \approx \int_{-\infty}^{b+\frac{1}{2}} f_Y(y) \, dy = F_Y\left(b+\frac{1}{2}\right), \quad \mathbb{P}(X \ge a) \approx \int_{a-\frac{1}{2}}^{\infty} f_Y(y) \, dy = 1 - F_Y\left(a-\frac{1}{2}\right)$$

this approximation holds if $n \ge 15$, $np \ge 5$ and $n(1-p) \ge 5$.

Theorem 12.18 Chebyshev Inequality Let X an random variable,

$$\mathbb{P}(|X - \mathbb{E}(X)| > x) \le \frac{\operatorname{Var}(X)}{x^2}, \quad x > 0$$

13 Random Walk

Definition 13.1 $X_1, X_2, ...$ independent random variables with values in $\{-1, 1\}$ set $p := \mathbb{P}(X_1 = 1), q := \mathbb{P}(X_1 = -1)$ and set $S_0 \ge 0$. Then, the sequence

$$S_n := S_0 + X_1 + X_2 + \dots + X_n$$

is called simple random walk

Theorem 13.2 *pmf of* S_n Suppose that n + k is even. Then,

$$\mathbb{P}(S_n - S_0) = \binom{n}{\frac{n+k}{2}} p^{\frac{n+k}{2}} q^{\frac{n-k}{2}}$$

Definition 13.3 Passage times Let $\{S_n\}_{n\geq 0}$ be a simple random walk with $S_0 = i$. Then,

$$T_{i,k} := \min\{n \ge 1 : S_n = k\}$$

is the passage time from i to k

Theorem 13.4 Finiteness criterion

$$\mathbb{P}(T < \infty) = \begin{cases} 1 & p \ge q \\ \frac{p}{q} & p < q \end{cases}$$

Theorem 13.5 Finite expected passage time If p > q, then $\mathbb{E}[T] < \infty$.

Theorem 13.6 Markov inequality Let a > 0 and Y be any non-negative random variable. Then,

$$\mathbb{P}(Y \ge a) \le \frac{1}{a}\mathbb{E}(Y)$$

Theorem 13.7 pmf of $T_{0,b}$ Let $(S_n)_{n\geq 0}$ be simple random walk with $S_0 = 0$. Then, for b > 0,

$$\mathbb{P}(T_{0,b} = n) = \frac{b}{n} \mathbb{P}(S_n = b)$$

References

- [1] Christian Hirsch. Probability theory. 2021.
- [2] Werner Linde. Probability Theory. De Gruyter, 2016.